
ICASE
EXPERIENCE WITH THE FORMAL SEMANTIC DEFINITION OF HAL/S

Terrence W. P r a t t

and

George E. 'raydweii

(N A S A - C R - 1 d S 3 0 4) EXPERIENCE WITH THE FORMAL N89-71426
SEMANTIC D E F I N I T I O N OF HAL/S (X C A S E) 25 p

Unc 1 as
00/61 0 2 2 4 3 6 7

Report No. 82-7

March 18, 1982

I N S T I T U T E FOR COMPUTER APPLICATIONS I N SCIENCE AND ENGINEERING

NASA Langley R e s e a r c h C e n t e r , H a m p t o n , V i r g i n i a 23665

O p e r a t e d by t he

U N I V E R S I T I E S SPACE RESEARCH ASSOCIATION

EXPERIENCE WITH THE FORMAL SEMANTIC DEFINITION OF W / S

Terrence W. P r a t t
I n s t i t u t e f o r Computer Applicat ions i n Science and Engineer ing

and
Univers i ty of V i rg in i a

*
George D. Maydwell

Univers i ty of V i rg in i a

ABSTRACT

HAL/S is a l a r g e genera l purpose real-time programming language some-

what similar t o ADA. Its major app l i ca t ions are f o r embedded real-time

systems, i n p a r t i c u l a r f o r t he Space S h u t t l e on-board computer sof tware and

similar a p p l i c a t i o n s wi th in NASA. Af te r t h e language had been i n resular

use f o r s e v e r a l years , we were requested by NASA t o prepare a formal seman-

t i c d e f i n i t i o n of t h e language us ing t h e method of H-graph semantics. This

paper r e p o r t s on t h e method and s t r u c t u r e of t h a t d e f i n i t i o n and on exper i -

ence wi th i t s use i n f ind ing and co r rec t ing e r r o r s i n t h e language s p e c i f i -

c a t i o n and i n the des ign of implementations f o r t h e language.

*
Current address: Software Arts, Inc., 675 Massachusetts Ave., Cambridge,

MA 02139.

This research was supported i n part by NASA Grant No. NSG-1458 and NSF
Grant No. MCS78-00763 and a l s o by NASA Contract No. NAS1-16394 whi le t h e
f i r s t au thor was i n res idence a t t h e I n s t i t u t e f o r Computer Appl ica t ions i n
Science and Engineeer ing, NASA Langley Research Center , Hampton, VA 23665.

-1-

1. HAL/s

HAL/S 111 is a p recu r so r t o ADA. It w a s designed and implemented i n

t h e e a r l y 1970's by I n t e r m e t r i c s , a company t h a t a l s o prepared one of t h e

two f i n a l ADA designs. HAL/S is intended f o r a similar set of a p p l i c a t i o n s

(embedded real-time software) and is a language of about t h e same s i z e as

ADA, i n terms of number of f e a t u r e s . The NASA Space S h u t t l e p r o j e c t i s t h e

primary user of t he language, b u t i t is a l s o used f o r several o t h e r pro-

jects within NASA. HALIS w a s developed i n t h e e a r l y 1970's and r e p r e s e n t s

a good state-of-the-art design from t h a t period. Because it is not as

widely known as ADA or PASCAL, some of i t s key f e a t u r e s are l i s t e d below.

The language includes:

a. A complete set of f e a t u r e s f o r real-time c o n t r o l of concurrent

t a s k s , including t a s k d e f i n i t i o n , schedul ing using p r i o r i t i e s , c lock t i m e s ,

o r even t s , t a s k c a n c e l l a t i o n based on clock t i m e s o r even t s , c r i t i ca l sec-

t i o n s with lockout from shared d a t a , and w a i t and s i g n a l ope ra t ions ;

b. Exception handl ing mechanisms, i nc lud ing program d e f i n i t i o n of ex-

cep t ion handlers and r a i s i n g of except i o n s ;

C. A l a r g e complement of b u i l t - i n d a t a types (but no type d e f i n i t i o n

mechanisms), i nc lud ing real, i n t e g e r , v e c t o r , matr ix , a r r a y , record, poin-

ter , b i t s t r i n g , c h a r a c t e r s t r i n g , and event ;

d. Extremely gene ra l s u b s c r i p t i n g of a r r a y s , i nc lud ing s e l e c t i o n of

a r b i t r a r y s l ices , subarrays and a r b i t r a r y sets of components through use of

arrayed" subs c r i p t s ; 11

e. P r i m i t i v e ope ra t ions and expres s ions def ined f o r a r r a y operands,

i nc lud ing some reshaping and type conversions;

f "Reentrant" procedures (shared concur ren t ly by m u l t i p l e t a s k s) and

exclusive" procedures (exc lus ive access by one t a s k a t a t i m e) ; no recur- 11

s i o n ;

- 2 -

g. Many miscellaneous f ea tu res : macros, i n - l i ne func t ions , input-

loops, c o n t r o l of s t o r a g e output (p r i m i t i v e) , temporary v a r i a b l e s i n

r e p r e s e n t a t i o n s and s t o r a g e a l l o c a t i o n , etc.

HAL/S implementations e x i s t tha t are

d i f f e r e n t mainframes (IBM 360/370, DG ECLIPSE

hosted on a t least t h r e e

and MODCOMP) and t h a t com-

p i l e code f o r a t least t e n d i f f e r e n t t a r g e t machines. The major implemen-

t a t i o n on the 360/370 i s b u i l t using a modified XPL compiler-generator t o

produce an in t e rmed ia t e code c a l l e d HALMAT. HALMAT is optimized i n a

s e p a r a t e machine-independent pass and then f e d t o code gene ra to r s f o r par-

t i c u l a r t a r g e t machines. HAL/S a l s o provides a support environment of simu-

l a t i o n and a n a l y s i s t o o l s . Thus W / S provides, i n a somewhat more primi-

t i v e form, much of what ADA w i i i provide. It i s one of the major high-

l e v e l languages f o r embedded computer a p p l i c a t i o n s t h a t is i n production

use a t present . More important ly for t h i s paper, i t r e p r e s e n t s a language

t h a t had been i n use f o r l a r g e s c a l e , p o t e n t i a l l y l i f e - c r i t i c a l real-time

a p p l i c a t i o n s f o r s e v e r a l yea r s p r i o r t o t h e s tar t of t h i s p r o j e c t . It a l s o

i s a language developed p r imar i ly in an i n d u s t r i a l environment which has

not r ece ived extended academic study o r a n a l y s i s during i t s formative

years, i n c o n t r a s t t o ADA.

-

2. H-graph Semantics

The formal semantic d e f i n i t i o n of HAL/S uses a d e f i n i t i o n a l method

c a l l e d H-graph semantics [2 , 3] . The approach is an o p e r a t i o n a l one: a f o r -

m a l model i s def ined t h a t r ep resen t s an a b s t r a c t implementation of t h e lan-

guage. The d e f i n i t i o n has two pa r t s , d e f i n i n g t h e t r a n s l a t i o n and execu-

t i o n of programs

-3-

Execution is modelled i n terms of an a b s t r a c t H-graph machine, using

no t ions of s t a t e and s t a t e t r a n s i t i o n . S t a t e s are represented as H-graphs,

which are h i e r a r c h i e s of d i r e c t e d graphs t h a t r ep resen t t h e var ious d a t a

and code s t r u c t u r e s present during execut ion of a program. The class of

poss ib l e s t a t e s t r u c t u r e s is def ined by an H-graph grammar, which is a fo r -

m a l grammar i n which product ions de f ine the va r ious types of da t a and code

s t r u c t u r e s (H-graphs) t h a t are used i n the model. S ta te t r a n s i t i o n s are

def ined by a set of H-graph t ransforms, each of which de f ines a poss ib l e

l o c a l t ransformation i n a s ta te H-graph during execut ion , and by a t r a n s i -

t i o n func t ion , which de f ines the next t ransform t o apply a t any s ta te t o

e f f e c t the next s t a t e t r a n s i t i o n . The t ransforms thus represent t h e p r i m i -

t i v e operat ions of t h e a b s t r a c t machine, and t h e t r a n s i t i o n func t ion repre-

s e n t s the i n t e r p r e t a t i o n cyc le of the machine.

Trans la t ion i s modeled a l s o a s an H-graph machine, u s u a l l y wi th two

b a s i c t r a n s i t i o n s corresponding t o (1) pars ing and t r a n s l a t i o n i n t o i n t e r -

mediate code us ing a contex t f r e e t r a n s l a t i o n s p e c i f i c a t i o n , and (2) s t a t i c

type checking, r e s o l u t i o n of overloading, and o t h e r "semantic ac t ions" t h a t

produce the c o r r e c t i n i t i a l s tate f o r t he run-time a b s t r a c t machine. The

f i r s t s t e p is convenient ly represented by a p a i r grammar which de f ines the

t r a n s l a t i o n by pa i r ing product ions i n the BNF grammar de f in ing t h e syntax

wi th productions i n the H-graph grammar de f in ing t h e in t e rmed ia t e code.

These semantic d e f i n i t i o n methods are well-developed and descr ibed

elsewhere [2 , 3] . For th i s paper the t e c h n i c a l d e t a i l s are not needed t o

understand the r e s u l t s . H-graph semantics i s s u b s t a n t i a l l y d i f f e r e n t from

o t h e r semantic d e f i n i t i o n methods such as d e n o t a t i o n a l semantics [4] ,

axiomat ic semantics [5], o r t h e Vienna D e f i n i t i o n Language 161. The most

important d i f fe rence f o r t h i s paper l i e s i n t h e emphasis i n H-graph seman-

-4-

t i c s on a d e f i n i t i o n t h a t i s a l s o an a b s t r a c t implementation model f o r t h e

language.

3 . The HAL/S Semantic D e f i n i t i o n

The complete formal semantic d e f i n i t i o n i s found i n [7]. The d e f i n i -

t i o n inc ludes a l l parts of t he language wi th t h e except ion of c e r t a i n low-

l e v e l o r s t r o n g l y implementation dependent f e a t u r e s . I n p a r t i c u l a r , t h e

d e f i n i t i o n inc ludes a l l of t he real-t ime f e a t u r e s , except ion handl ing,

t a s k s , programs, procedures and func t ions , d a t a s t r u c t u r e s , and o t h e r high-

l e v e l p a r t s of t he language. A complete run-time model f o r t he language i s

given. The t r a n s l a t i o n d e f i n i t i o n inciudes only the t r a n s l a t i o n i n t o the

i n i t i a l s ta te of t h e run-time machine (us ing a p a i r grammar t o map each

s y n t a c t i c c o n s t r u c t i n t o code and/or d a t a f o r t h e run-time machine). No

at tempt is made t o formally model the s t a t i c type-checking and o t h e r seman-

t i c a n a l y s i s parts of t h e compiler.

The d e f i n i t i o n inc ludes :

176 pair grammar productions, each of which d e f i n e s the mapping of

one s y n t a c t i c c o n s t r u c t i n t o an i n i t i a l codeldata s t r u c t u r e f o r t he run-

t i m e machine;

73 productions t h a t de f ine d a t a s t r u c t u r e s used i n t h e run-time

machine, where the d a t a s t r u c t u r e is e i t h e r a "system d a t a s t r u c t u r e " (such

as a queue used i n t h e real-time process schedul ing) t h a t is part of t he

run-time support s t r u c t u r e , o r a data s t r u c t u r e t h a t changes during execu-

t i o n from i ts i n i t i a l form as given i n t h e pair grammar production. I f a

code o r d a t a s t r u c t u r e is i n v a r i a n t during execut ion (as most code s t r u c -

t u r e s are) t h e production is given only once i n the pair grammar;

- 5-

139 transform definitions, each defining a possible primitive ac-

tion (or set of actions) during program execution; and

the transition function.

In preparing the definition, we worked almost entirely from the lan-

guage specification [l], rather than from the implementation model provided

by some existing implementation of the language. In the cases where the

speicification was vague, ambiguous, or inconsistent, we often ran one or

more test programs on the 360/370 implementation to see what semantics was

used by the implementation. However, we made no significant use of avail-

able documentation on existing HAL/S compiler structures.

Comparison of the HAL/S formal semantic definition with the ADA defi-

nition [81 using denotational semantics brings out as major differences:

a. The modeling of the semantics of real-time features for HAL/S;

this part of ADA is not treated in [8];

b. The modeling of the static checking parts of compilation in the

ADA definition; this part of HAL/S semantics is not treated in [7],

although we have modeled these parts of compilation in other language defi-

nitions;

C. The emphasis on realistic implementation models in the HAL/S defi-

nition; the denotational definition of ADA is not intended to be used di-

rectly as an implementation guide;

d. The general style of the definitions of run-time semantics: the

ADA definition uses recursive functions, continuations, fixed points, and

the usual formal apparatus of denotational semantics; control and state

structure descriptions are decentralized. The HAL/S definition uses ab-

stract Ifstate machine" concepts, with control centralized in the transition

function and the state description centralized in the H-graph grammar pro-

ductions defining the state structure.

-6-

4. Experience with Use of t he HAL/S D e f i n i t i o n

Even though HAL/S had been i n in t ens ive use f o r s e v e r a l years p r i o r t o

t h i s p r o j e c t , t h e production of t h e formal semantic d e f i n i t i o n l e d t o

c l a r i f i c a t i o n and c o r r e c t i o n of severa l dozen s u b t l e problems i n the lan-

guage s p e c i f i c a t i o n and i t s implementation. I n a d d i t i o n the d e f i n i t i o n

proved t o be a u s e f u l b a s i s f o r a d e t a i l e d des ign of a HAL/S implementa-

t i o n . We d i scuss each of t hese experiences s e p a r a t e l y .

C l a r i f i c a t i o n of Language - Def in i t i on ___

C l a r i f i c a t i o n of a language d e f i n i t i o n i s one of t h e primary uses f o r

any semantic d e f i n i t i o n . Despi te t h e implementation and use of t he lan-

guage, we assembied a i ist of over 50 s i g n i f i c a n t errors, ambigui t ies , and

i n c o n s i s t e n c i e s i n t h e language s p e c i f i c a t i o n dur ing t h i s p ro jec t [9].

These problem areas were discovered i n t h e course of t r y i n g t o f i n d a con-

s i s t e n t implementation model f o r the language, t h a t is, an implementation

model f o r t h e run-time s t r u c t u r e tha t would make a complete, c o n s i s t e n t

whole ou t of t h e d ive r se set of f ea tu res i n 111 Examples inc lude almost

every a spec t of t h e language, including, i n p a r t i c u l a r , t a sk ing , excep-

t i o n s , and ar rayed subsc r ip t s .

The l i s t of problem areas was of s e r i o u s concern t o NASA, because

s e v e r a l hundred thousand l i n e s of HAL/S code f o r Space S h u t t l e had a l r e a d y

been coded and t e s t e d . Af t e r checking each problem area, it was determined

t h a t few involved language s t r u c t u r e s t h a t had been used i n Space S h u t t l e

code, because of dec i s ions e a r l y i n tha t p ro j ec t t o avoid p a r t s of t he lan-

guage t h a t were "suspect" such as arrayed s u b s c r i p t s and except ion hand-

l i n g . However, s i x changes t o the language were made d i r e c t l y as a r e s u l t

of t h i s problems l i s t [l o] , and t h e "array subsc r ip t " f e a t u r e was complete-

- 7 -

l y de le ted . Also a number of s e c t i o n s of t h e s p e c i f i c a t i o n were c l a r i f i e d

t o remove ambigui t ies and i n c o n s i s t e n c i e s (over 30 modif ica t ions t o t h e

language s p e c i f i c a t i o n were made).

Obviously t h e implementors of HAL/S had come up a g a i n s t t hese same

problems areas i n the d e f i n i t i o n , but as o f t e n happens, an a r b i t r a r y imple-

mentat ion choice was made and t h e s p e c i f i c a t i o n w a s not co r r r ec t ed o r

c l a r i f i e d . Thus, a l though it might be expected t h a t an implementation e f -

f o r t would f i n d and b r ing t o a t t e n t i o n t h e same set of problems, t h i s w a s

no t t he case.

Detec t ion of Compiler E r ro r s

R e s i d u a l bugs i n compilers and run-time support rou t ines are a s e r i o u s

problem where l i f e c r i t i c a l sof tware is w r i t t e n i n high-level languages.

No v e r i f i c a t i o n o r a n a l y s i s of a source program is of much value i f t h e

compiler does not c o r r e c t l y implement the language s p e c i f i e d . Our goa l i n

t h e HAL/S d e f i n i t i o n was not t o f i n d e r r o r s i n e x i s t i n g compilers , but t he

l i s t of problem areas descr ibed above i d e n t i f i e d language f e a t u r e s t h a t

might have caused t roub le f o r implementors. Where t h e language spec i f ica-

t i o n is incomplete, ambigious, o r con t r ad ic to ry , t h e language implementa-

t i o n necessa r i ly does something. What is implemented i n these cases i s not

necessa r i ly an e r r o r u n t i l t h e s p e c i f i c a t i o n is t i gh tened t o e l i m i n a t e t h e

problem, but a t t h a t t i m e i f t he s p e c i f i c a t i o n and implementation d i f f e r ,

then each problem becomes a compiler e r r o r . Our l i s t of HAL/S problem

a r e a s w a s u sed by o the r s t o f i n d s e v e r a l s u b t l e bugs i n HAL/S implementa-

t i o n s , and w e i nadve r t en t ly discovered one wi th one of our tes t programs as

w e l l .

-8-

Three kinds of e r r o r s w e r e found:

1. Implementation more r e s t r i c t e d than t h e s p e c i f i c a t i o n . The imple-

mentation d id not a l low a c o n s t r u c t t h a t t h e s p e c i f i c a t i o n s t a t e d t o be le-

, g a l .

2. Implementation d i f f e r e n t from t h e s p e c i f i c a t i o n . An e r r o r caused

by i n c o r r e c t l y i n t e r p r e t i n g part of the language s p e c i f i c a t i o n .

3 . Implementation matches the s p e c i f i c a t i o n , but both are i n c o r r e c t .

The most s e r i o u s e r r o r s were those i n which t h e s p e c i f i c a t i o n was t o o

i t had no reasonable meaning) and where the implementation allowed t h e

c o n s t r u c t as w e l l , simply producing "bad code" i n response t o use of t h e

c o n s t r u c t . Execution of t he bad code could p o t e n t i a l l y compromise t h e

i n t e g r i t y of t he e n t i r e run-time s t r u c t u r e (which i s not t h e case i n (1) o r

(2)) .

Examples.

The major problems found i n the language s p e c i f i c a t i o n are d e t a i l e d

below. In each case, the language f e a t u r e i s b r i e f l y descr ibed, then t h e

problem with the s p e c i f i c a t i o n and/or implementation of t h e f e a t u r e , and

f i n a l l y the d i s p o s i t i o n of t h e problem i s given (t o the e x t e n t known). The

o p t i o n s f o r d i s p o s i t i o n of problems where implementation and s p e c i f i c a t i o n

d i f f e r were somewhat unique t o t h e s p e c i a l circumstances of HAL/S, i n which

t h e same group w a s both t h e designer and almost t h e s o l e implementor. A

c o r r e c t i o n could be made e i t h e r by changing t h e s p e c i f i c a t i o n t o match t h e

implementation, o r v i c e ve r sa , o r possibly by changing both. For a s t an -

dard language such as Ada o r Fortran, t he op t ion of changing the s p e c i f i -

c a t i o n i n s t e a d of t he implementation is u s u a l l y not open.

-9-

Problem 1: Arrayed s u b s c r i p t s . HAL provides an extremely gene ra l

subsc r ip t ing f e a t u r e f o r a r r a y s (and o t h e r d a t a s t r u c t u r e s such as v e c t o r s ,

matrices, cha rac t e r s t r i n g s and b i t s t r i n g s , a l l of which are s e p a r a t e

t y p e s i n HAL). A subsc r ip t may be:

a . A simple index (a s i n most languages) ,

b. A s l i ce a long a s i n g l e dimension, s p e c i f i e d by "*" (a l l e lements) ,

I AT J (I elements s t a r t i n g a t element J) , o r J TO K (elements J through

K) ,
C. An "arrayed subscr ip t" , e.g., AB where B is an i n t e g e r a r r a y of

s u b s c r i p t s , spec i fy ing s e l e c t i o n of a subar ray of A, where B g ives t h e sub-

s c r i p t s of the s e l e c t e d elements and t h e i r pos i t i on i n t h e r e s u l t a r r ay .

The problem. The semantics of many a s p e c t s of a r rayed s u b s c r i p t s are

l e f t undefined by the language s p e c i f i c a t i o n . The major problems are:

a. Assignment t o a v a r i a b l e wi th an a r r ayed s u b s c r i p t is not c l e a r l y

def ined i f t h e s u b s c r i p t conta ins a repea ted value. For example, t h e mean-

ing of MI * = MI,*+l when I = [2 ,1 ,1] (an example from [l]) .
9

b. No r u l e s are given f o r determining t h e shape of t he r e s u l t i n g a r r a y

when a combination of a r rayed s u b s c r i p t s and s l i c e s i s s p e c i f i e d .

C. No r u l e s are given f o r determining t h e da t a type of t he r e s u l t when

an arrayed s u b s c r i p t is appl ied t o a matrix, v e c t o r , o r s t r i n g . For exam-

p l e , if A is a c h a r a c t e r s t r i n g and I is a one-dimensional a r r a y of sub-

s c r i p t s , is AI a c h a r a c t e r s t r i n g o r an a r r a y of one c h a r a c t e r c h a r a c t e r

s t r i n g s .

Dispos i t ion of t h e problem. The implementors analyzed poss ib le solu-

t i o n s t o these problems as fol lows [14]:

"It would be extremely d i f f i c u l t t o c l e a r l y spec i fy how a r rayness

i n subsc r ip t s i s present ly implemented. To have t h e Language S p e c i f i c a t i o n

-10-

and compiler match would t h e r e f o r e involve changes t o both. Arrayed sub-

s c r i p t s are very seldom used...." The arrayed s u b s c r i p t f e a t u r e w a s en-

t i r e l y d e l e t e d from t h e language.

Problem 2: V i s i b i l i t y of TEMPORARY v a r i a b l e s . The gene ra l looping

c o n s t r u c t i n HAT., i s t h e DO...END group. In a DO group header i t is possi-

b l e t o d e c l a r e v a r i a b l e s as TEMPORARY. The l i f e t i m e of such a v a r i a b l e

then i s r e s t r i c t e d t o the execut ion of t h e DO group r a t h e r than t o t h a t of

t h e l a r g e r program u n i t containing the DO group.

The problem. A TEMPORARY v a r i a b l e may become v i s i b l e through non loca l

r e f e r e n c e s be fo re a DO group i s en te red o r a f t e r i t s execut ion i s

cnmplete, This may happen hecaUSe a task, prOcP-dnres or f u n c t i n n may he

dec la red w i t h i n a DO group and may then access non loca l ly any TEMPORARY

v a r i a b l e def ined i n t h e DO group. Such a subprogram may be c a l l e d from

o u t s i d e t h e DO group, and such a t a s k may be i n i t i a t e d without t he DO group

being en te red . In checking what was allowed by the 360 implementation, we

found t h a t t h e compiler allowed the c o n s t r u c t s , but t h e value of t h e

TEMPORARY v a r i a b l e w a s garbage r ega rd le s s of whether t h e DO group had been

executed previously.

D i spos i t i on of t he problem. The implementors i d e n t i f i e d t h i s problem

as the only one i n which t h e compiler produced "bad code" t h a t might a f f e c t

e x i s t i n g Space S h u t t l e programs. Declarat ion of a t a s k wi th in a DO group

w a s p roh ib i t ed . Calls t o procedures and func t ions dec la red w i t h i n a DO

group w e r e allowed only from within t h e same DO group. Thus TEMPORARY

v a r i a b l e s were made v i s i b l e only during execut ion of t he DO group in which

they were defined.

-11-

Problem 3: Mutual exc lus ion from shared da ta . In HAL, v a r i a b l e s

shared among t a s k s are organized i n t o "lockgroups" numbered 1 t o N (an i m -

plementation def ined maximum). A shared v a r i a b l e is dec lared wi th the

a t t r i b u t e LOCK(k) t o place i t i n lockgroup k. Locked v a r i a b l e s may only be

re ferenced wi th in UPDATE blocks (c r i t i c a l r eg ions) . Locked v a r i a b l e s may

be passed as parameters t o subprograms. The corresponding formal parameter

may be declared LOCK(k), i n d i c a t i n g t h e a c t u a l parameter i s always from the

k t h lockgroup, o r LOCK(*), i n d i c a t i n g t h a t t he a c t u a l parameter is from a

d i f f e r e n t lockgroup on d i f f e r e n t ca l l s .

The problem. On e n t r y t o an UPDATE block which r e fe rences a formal

parameter declared as LOCK(*), i t i s not c l e a r whether a l l lockgroups are

locked o r only t h a t lockgroup t o which t h e a c t u a l parameter belongs on each

c a l l . The 360 implementation was found t o lock a l l lockgroups (i.e., ac-

cess t o any shared d a t a w a s c losed of f u n t i l t h e UPDATE block w a s

complete).

Dispos i t ion of the problem. The s p e c i f i c a t i o n was c l a r i f i e d t o ind i -

c a t e t h a t a l l lockgroups are locked.

Problem 4 : Real-time task ing . HAL con ta ins a v a r i e t y of s ta tements

f o r def in ing and c o n t r o l l i n g t a s k s i n real-time a p p l i c a t i o n s . Tasks may be

scheduled f o r execut ion i n a v a r i e t y of ways, i nc lud ing c y c l i c r e p e t i t i o n

a t a set t i m e i n t e r v a l , e.g., us ing "SCHEDULE P REPEAT U N T I L E" t o i n d i c a t e

immediate r e p e t i t i o n of P each t i m e a cyc le completes, cont inuing u n t i l

some "event expression" E becomes t r u e . Tasks may be given p r i o r i t i e s .

Tasks may be terminated e i t h e r by a TERMINATE s ta tement (immediate termina-

t i o n) or a CANCEL s ta tement (t e rmina te a t end of c u r r e n t cyc le) .

- 1 2 -

The problem. Although the s p e c i f i c a t i o n of t h i s r a t h e r d i f f i c u l t area

of the language was gene ra l ly " t igh t " , t h e s p e c i f i c a t i o n was s i l e n t o r am-

biguous on s e v e r a l points :

a. No meaning w a s given f o r a p r i o r i t y s p e c i f i c a t i o n on a t a sk .

b. When a t a s k was terminated by CANCEL, i t s dependent t a s k s were a l s o

t o be canceled. But were the dependents canceled immediately or a t t h e end

of t he c u r r e n t cyc le (t h e s p e c i f i c a t i o n s a i d immediately, but t h e 360 i m -

plementation canceled a t t h e end of the cyc le) . Both the t a s k and i ts de-

pendents could schedule o t h e r tasks a f t e r t h e CANCEL s ta tement w a s

executed; were t h e s e o t h e r t a s k s also canceled? In gene ra l , t he " t r i c k l e

down" semantics of CANCEL w a s not well def ined.

c. If a t a s k were terminated by a TERMINATE command, "ces sa t ion of ex-

ecu t ion" of i t s dependents w a s a l s o t o t a k e place. Was t h i s t he same t h i n g

as terminat ion?

D i s p o s i t i o n of t he problem. The semantics f o r CANCEL was changed t o

d e l e t e t h e r e f e r e n c e t o cance la t ion of dependents. TERMINATE w a s c l a r i f i e d

t o s p e c i f y TERMINATE of dependents. The semantics of t a s k p r i o r i t i e s was

s p e c i f i e d as e n t i r e l y implementation dependent.

Problem 5: Lifet imes of EVENT v a r i a b l e s . A t a s k or subprogram may

d e c l a r e a v a r i a b l e of type EVENT. Such a v a r i a b l e i s s i m i l a r t o a boolean

v a r i a b l e , but i t may be used i n "event expressions" f o r t a s k schedul ing,

e.g., i n t h e s ta tement "SCHEDULE P ON E" (where E is an EVENT v a r i a b l e) .

In ano the r part of t he s p e c i f i c a t i o n , a v a r i a b l e may be declared t o be i n

e i t h e r of t h e i n i t i a l i z a t i o n classes STATIC (va lue preserved between ca l l s)

o r AUTOMATIC (va lue not preserved between cal ls) , and any v a r i a b l e may be

a s s igned an i n i t i a l value. STATIC i n i t i a l i z a t i o n occurs only once a t t h e

- 1 3 -

f i r s t execution of the d e c l a r i n g r o u t i n e ; AUTOMATIC i n i t i a l i z a t i o n occurs

on each entry.

The problem. An EVENT v a r i a b l e used i n a real-time schedul ing s ta te-

ment may "outlive" the r o u t i n e d e c l a r i n g i t , because the d e c l a r i n g r o u t i n e

may complete i t s execut ion be fo re t h e event i s s i g n a l e d (changed t o

t r u e) . If so, then the d e c l a r i n g r o u t i n e d i e s , but t he event v a r i a b l e con-

t i n u e s t o be evaluated by t h e "real-time execut ive" u n t i l t h e r e l a t e d

schedul ing i s complete. In the meantime, t he d e c l a r i n g r o u t i n e might have

been executed a second t i m e . An AUTOMATIC EVENT v a r i a b l e would not neces-

s a r i l y have i t s v lue preserved a f t e r e x i t from t h e d e c l a r i n g r o u t i n e and i t

would be r e i n i t i a l i z e d on t h e next cal l . AUTOMATIC EVENT v a r i a b l e s turned

out t o be prohibi ted by t h e 360 compiler, a l though allowed by t h e language

s p e c i f i c a t i o n . A r e l a t e d problem w a s t h a t event expressions could inc lude

s u b s c r i p t expressions naming o t h e r v a r i a b l e s . The time of e v a l u a t i o n of

t h e s e subsc r ip t expressions w a s not de f ined , and might a l s o l ead t o these

v a r i a b l e s o u t l i v i n g t h e i r d e f i n i n g subprogram.

Di spos i t i on of the problem. The s p e c i f i c a t i o n w a s changed t o p r o h i b i t

AUTOMATIC EVENT v a r i a b l e s . D i spos i t i on of t he o t h e r problem is unknown.

Problem 6: Exception handling. HAL con ta ins f a c i l i t i e s f o r d e f i n i n g

excep t ion handlers ("e r ro r environments") and f o r r a i s i n g and propogating

excep t ions . The a c t i o n i n an except ion handler may be t o execute a state-

ment, t o IGNORE t he except ion and resume execut ion, o r t o SYSTEM the excep-

t i o n (invoke a system-def ined a c t i o n) . Exception hand le r s may handle ind i -

v i d u a l except ions, groups of excep t ions , o r ALL excep t ions , w i th a prece-

dence i n that order. Thus when an except ion i s r a i s e d , i t i s handled by an

-14-

i n d i v i d u a l handler i f one e x i s t s , otherwise by a handler f o r i ts group, and

f i n a l l y by a gene ra l ALL handler i f one e x i s t s .

The problem. The HAL s p e c i f i c a t i o n implied t h a t except ion propogation

followed s t a t i c scope rules (block n e s t i n g) , but t h e 360 implementation

turned out t o use dynamic scope rules (c a l l i n g cha in) . Which w a s

c o r r e c t ? The p r e c i s e meaning of the IGNORE o p t i o n w a s no t clear i n t h e

case of an except ion propogated down s e v e r a l levels of subprogram

nes t ing . Also t h e precedence r u l e s f o r propogated excep t ions were no t

c l e a r l y def ined.

D i s p o s i t i o n of t he problem. The s p e c i f i c a t i o n was modified t o s p e c i f y

dynamic scope r u l e s f o r except ion propogation. The o t h e r p o i n t s were

Problem 7: Parameter s p e c i f i c a t i o n s . A c h a r a c t e r s t r i n g formal para-

meter could have a l e n g t h s p e c i f i c a t i o n o r "*" t o i n d i c a t e an a r b i t r a r y

l eng th . Other parameter types could have some d i f f e r e n c e s between a c t u a l

and formal parameter s p e c i f i c a t i o n , for example, a formal might be d e c l a r e d

BOOLEAN and an a c t u a l B I T (1) (def ined as equ iva len t i n most s i t u a t i o n s) .

The problem. The r u l e s of correspondence between the a t t r i b u t e s of

a c t u a l and formal parameters were not complete. For example, could t h e

a c t u a l be dec la red BOOLEAN while the formal w a s dec l a red BIT(l) ? Could a

c h a r a c t e r s t r i n g formal have a length s p e c i f i c a t i o n o t h e r than * (ind ica -

t i n g an a r b i t r a r y l e n g t h) ?

D i s p o s i t i o n of the problem. The language s p e c i f i c a t i o n w a s changed t o

p r o h i b i t any l e n g t h but "*" f o r a character s t r i n g formal parameter. D i s -

p o s i t i o n of t he o the r problems is unknown.

- 1 5 -

Problem 8: Subsc r ip t s on c h a r a c t e r s t r i n g v a r i a b l e s . A s u b s c r i p t "#"

on a v a r i a b l e i n d i c a t e s t h e "maximum index-value i n t h e r e l e v a n t

dimension". This a p p l i e s t o b i t and c h a r a c t e r s t r i n g v a r i a b l e s as w e l l as

t o v e c t o r s , ma t r i ces , and a r r a y s .

The problem. A c h a r a c t e r s t r i n g has both a maximum l e n g t h and a cur-

r e n t length. Which l eng th w a s meant by "#"? If t h e c u r r e n t l eng th i s

meant and the l eng th is zero, what i s t h e r e s u l t ? I f t h e maximum l e n g t h is

meant, and the c u r r e n t l e n g t h i s less than t h e maximum, what i s the r e s u l t ?

D i spos i t i on of t he problem. "#" w a s def ined t o r e f e r t o the c u r r e n t

l eng th of a s t r i n g . D i spos i t i on of t he o t h e r problem i s unknown.

Problem 9: 1/0 and f i l e pos i t i on ing . A READ statement may con ta in

expressions involving t h e v a r i a b l e s being read, e i t h e r i n s u b s c r i p t expres-

s i o n s f o r o t h e r v a r i a b l e s or i n arguments f o r c o n t r o l func t ions such as

TAB, SKIP, and LINE t h a t c o n t r o l f i l e pos i t i on ing .

The problem. The t i m e of eva lua t ion of expres s ions i n READ l i s t s is

no t def ined, whether be fo re execut ion of t h e s t a t emen t begins o r when

reached during execution. For example, t h e meaning of READ (u) I, AI can-

not be determined. The f i l e p o s i t i o n i n g a f t e r a read s t e p w a s a l s o no t

s p e c i f i e d c l e a r l y , so t h e e f f e c t of t h e c o n t r o l f u n c t i o n s such as TbrB and

SKIP could not be determined p r e c i s e l y .

D i spos i t i on of t he problem. Evaluat ion of expres s ions i n READ state-

ments w a s def ined t o occur when the expres s ion w a s reached during execu t ion

of the statement. D i spos i t i on of t he o t h e r problems i s unknown.

It should be apparent from t h i s l i s t of problems t h a t most were caused

simply by t h e informal s t y l e of semantic d e f i n i t i o n used. S imi l a r ambi-

g u i t i e s and i n c o n s i s t e n c i e s have plagued almost every programming language

- 1 6 -

definition (PASCAL, FORTRAN, ALGOL 60, ADA, etc.) that has used this infor-

mal style of semantic definition. Considering the relatively limited expo-

sure of W / S in the programming community, the definition of this complex

language is fairly tight. Many of the problems we uncovered were remedied

by adding some short clarification to the language specification.

Implementation Design

An important virtue of structuring a formal definition so that it is

also an abstract design for an implementation lies in the potential use of

the definition as an intermediate step in the detailed design of an imple-

mentation. The major goal of our project was not to "debug" the HAL/S

specification but rather to use the formal semantic definition to determine

how effectively various language features could be implemented on par-

ticular restricted hardware architectures. The goal was to identify a sub-

set of the language that could be implemented with good run-time efficiency

on a particular computer. The two machines chosen for the study were the

IBM NSSC-11, a radiation hardened, slightly modified version of the IBM

360, and the Intel 8080A microprocessor.

An H-graph semantics definition is well-suited to this use because the

level of abstraction in such a definition lies between the implementation

independent specification found in the usual informal language definition

(e.g., [l]) and the detail of a particular implementation for a particular

machine. The productions of the "state grammar" (the H-graph grammar de-

fining the state of the run-time machine) define the various data and code

structures necessary to support program execution and the information that

each contains, but they do not specify any detailed storage layouts, link-

ages, or other details that may be machine dependent. Similarly the defi-

- 1 7 -

n i t i o n s of H-graph t ransforms s p e c i f y what t he run-time support r o u t i n e s o r

i n - l i n e code sequences produced by t h e compiler must do t o t h e d a t a s t r u c -

t u r e s , but t h e s p e c i f i c a t i o n is a l s o independent of machine d e t a i l s .

W e were success fu l i n ana lyz ing the d e t a i l e d implementation des ign f o r

t h e s e two machines by the r e l a t i v e l y simple process of (1) mapping each

production i n t h e state grammar i n t o a p a r t i c u l a r s t o r a g e r e p r e s e n t a t i o n on

t h e t a r g e t machine f o r the def ined d a t a o r code s t r u c t u r e and (2) mapping

each transform d e f i n i t i o n i n t o a p a r t i c u l a r code sequence t h a t manipulated

t h e defined da ta r ep resen ta t ion appropr i a t e ly . However, both s t u d i e s were

terminated without any a c t u a l implementation completed. Subsequently,

Feyock [131 used e s s e n t i a l l y the same methods t o produce an implementation

of t h e HAL/S real-time s t r u c t u r e coded i n PASCAL. In h i s work, product ions

i n t h e s t a t e grammar were mapped i n t o PASCAL type d e f i n i t i o n s and H-graph

transforms were represented as PASCAL procedures.

The study of implementation of t he NSSC-I1 [l l] and t h e I n t e l 8080A

[121 d e a l t p r imar i ly with the l a r g e r s t r u c t u r e s of the language, e s p e c i a l l y

t h e real-time f e a t u r e s , s to rage management, subprogram a c t i v a t i o n s , excep-

t i o n handl ing, and the run-time s t r u c t u r e s needed t o support t hese language

f e a t u r e s . The lower-level parts of t he language were less i n t e r e s t i n g be-

cause they were somewhat more convent iona l and a l s o i n most cases our se-

mantic model omit ted some low-level d e t a i l s needed f o r a c a r e f u l

a n a l y s i s . The model of t he implementation of t he l a r g e r s t r u c t u r e s of t h e

language was found t o be u s e f u l i n s e v e r a l ways:

1 . It brought t oge the r i n t o a coherent whole a l l t h e underlying run-

t i m e support s t r u c t u r e s needed t o implement a d i v e r s i t y of language fea-

t u r e s , each descr ibed s e p a r a t e l y i n t h e language s p e c i f i c a t i o n . For an

implementor, cons t ruc t ion of such a coherent implementation model i s neces-

- 1 8 -

s a r i l y the f i r s t s t e p i n implementation design and o f t e n is extremely d i f -

f i c u l i without a "b luepr in t" such as i s provided by t h e H-graph semantic

d e f i n i t i o n .

2. It allowed a s t ra ight forward l ayou t f o r l o c a l s to rage areas f o r

each t a s k , program and subprogram t o be determined. A few product ions i n

t h e H-graph grammar def ined, f o r each type of program, e x a c t l y which items

of in format ion were needed i n the loca l s to rage area f o r t h a t type of pro-

gram u n i t . From t h i s it was simple t o determine the s to rage layout f o r

a c t i v a t i o n records , and t o " f ine tune" t h e s e l ayou t s as the d e t a i l e d des ign

of o the r parts of the implementation was completed.

3. It allowed a n a l y s i s of t he s t o r a g e management s t r u c t u r e r equ i r ed

i n t h e implementation. From study of t he a b s t r a c t implementation model,

s e v e r a l s u b t l e f a c t s about the s torage management s t r u c t u r e f o r HAL/S be-

came apparent . For real-time l i f e - c r i t i c a l systems, dynamic s to rage man-

agement i s p a r t i c u l a r l y troublesome because of t he p o s s i b i l i t y of a system

f a i l u r e caused by running out of s torage (e.g., an overflow of a dynami-

c a l l y a l l o c a t e d queue is repor ted t o have forced a manual takeover and lan-

d ing of one of the early lunar f l i g h t s) . By ana lyz ing the HALIS model, a

few simple r e s t r i c t i o n s were found tha t enabled a s ta t ic s to rage management

s t r u c t u r e f o r a l l t he real-t ime queues t o be used. A t t h e same t i m e , a po-

t e n t i a l l y s e r i o u s s to rage management problem f o r r e e n t r a n t procedures w a s

i d e n t i f i e d t h a t e i t h e r required a r e s t r i c t i o n i n t h e language, a worst case

s t a t i c a l l o c a t i o n s t r a t e g y (p o t e n t i a l l y expensive i n s t o r a g e) , o r dynamic

a l l o c a t i o n during execut ion.

A s an a b s t r a c t implementation model, an H-graph semantic d e f i n i t i o n

has some s imi la r i t i es t o d e f i n i t i o n of a machine independent i n t e rmed ia t e

code f o r t he language, such as the DIANA in te rmedia te r ep resen ta t ion pro-

-19-

posed for ADA [151. Our original intent was to use the HALMAT intermediate

code (in an abstract form) used by the HAL/S implementation as the basis

for our code representations in the formal model. However, we found HALMAT

to be only marginally useful for that purpose, primarily because the HALMAT

operations reflected rather strongly the syntactic divisions of HAL/S pro-

grams and only rather weakly modeled the run-time distinctions that were

the basis for our choice of transforms in the run-time model. We suspect

that this may be true of intermediate codes in general. The DIANA inter-

mediate code for ADA is a form of abstract syntax tree for ADA programs,

and thus also reflects more the syntactic structure of ADA than the run-

time organization needed in an ADA implementation.

5. Conclusion

Experience with the H-graph semantic definition of HAL/S indicates

that this style of language definition realizes two major advantages:

a. In constructing a formal semantic definition, vague, ambiguous and

inconsistent parts of the language specification are identified and given

precise meaning; and

b. By providing an abstract implementation model, the definition sim-

plifies implementation design and supports precise analysis of large

scale implementation design issues at an early stage.

Advantage (a) would apply to any careful, complete analysis of a lan-

guage definition, whether or not a formal semantic definition was the

goal. However, our experience shows that simply having several complete

implementations of the language in use is not necessarily sufficient to

provide this result.

-20-

Advantage (b) is not commonly realized through formal semantic defini-

tions, because other definition methods such as denotational and axiomatic

semantics have usually avoided direct implementation models. Our experi-

ence indicates that development of an abstract implementation model is val-

uable for a variety of purposes during implementation design. Recent ex-

perience with the use of an H-graph semantic definition in implementation

of another language strongly supports this conclusion.

- 2 1-

REFERENCES

HAL/S Language Specification, Version IR-61-9, Intermetrics, Inc.,

Cambridge, MA, September 1976.

Pratt, T., "H-graph semantics, Part 1: Data structure grammars, Part

2: H-graph machines," DAMACS Reports 81-15 and 81-16, University

of Virginia, September 1981, submitted for publication.

Pratt, T., "Application of formal grammars and automata to programming

language definition," in Applied Computation Theory, R. T. Yeh,

ed., Prentice-Hall, 1976.

Gordon, M., The Denotational Description of Programming Languages,

Springer-Verlag, 1979.

Hoare, C. A. R., "An axiomatic basis for computer programming," Comm.

ACM, Vol 12, No. 10, October 1969, 576-583. -

Lucas, P. and Walk, K., "On the formal description of PL/I," Annual

Review in Automatic Programming, 6, 3, Pergamon Press, 1969, 105-

181 0

Pratt, T. and .dydwell, G., "HAL/S formal semantic definition," SEAS

Report WA/528164/AMCS79/102, University of Virginia, August 1979,

350 pp.

-22-

[8] Formal Def in i t i on of the ADA Programming Language, Honeywell, Inc.,

C i i Honeywell Bul l , and In r i a , November 1980 (pre l iminary) .

[9] P r a t t , T. and Maydwell, G., "HAL/S language ambigui t ies and incons is -

t e n c i e s ," SEAS Report WA/528164/AMCS79/ 101, Univers i ty of

V i r g i n i a , J u l y 1979.

[l o] Garman, J. R., personal communication, 1979.

[l l] P r a t t , T., "HAL/S subse t d e f i n i t i o n and implementation design f o r t h e

NSSC-I1 f l i g h t computer SEAS Report UVA/528164/AMCS79/ 103,

ri-.r---.--;-.- -c TTZ-.A-; - A r n 7 n
u i i i v c ~ r 3 1 ~ y U L v ~ r g ~ r u a , aut jus^ 1 7 1 7 .

[12] Maydwell, G., "Vi r tua l computer t o hardware mapping: an approach t o

programming language implementat i o n , " SEAS Report

WA/528164/AMCS79/104, Universi ty of Vi rg in i a , October 1979.

[131 Feyock, S . , "Formal semantic s p e c i f i c a t i o n s as implementation blue-

p r i n t s f o r real- t ime programming languages," Proc. AIAA Computers

i n Aerospace Conf. 111, Oct. 1981.

[141 Ga l l an t , S. "HAL/S language group memo no. #04-79 ," I n t e r m e t r i c s ,

Inc., May 2 2 , 1979

[15] GOOS, G. and Wulf, W. "DIANA re ference manual", R e p t . CMU-CS-81-101,

Dept . of Comp. Sc i . , Carnegie-Mellon Univ., March 1981.

-23-

